Impact of energy crops at a regional level

Kevin Lindegaard

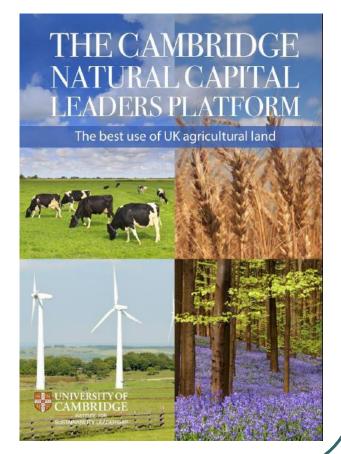
*Impact of Energy Crops Seminar*2nd December 2014

Rokwood

- EU Framework 7 research project
- 20 partners from 6 countries
- Each cluster includes:
 - SME, a research body and a local authority
- Duration: 36 Months

Why we need energy crops

- Finite amount of woodfuel
- Not always close to the end user
- Extraction can be expensive
- Transport costs are increasing
- Importing woodfuel is:
 - Less sustainable
 - Revenue benefits are achieved outside of the region
- Energy crops have other benefits



The best use of UK agricultural land

"Where land can deliver multiple benefits – such as forestry or perennial crops providing both a source of timber and energy as well as water management, carbon storage and wildlife benefits – all of these should be understood, valued and their multiple delivery actively encouraged and rewarded".

SRCs unique set of attributes

Bioengineering

Carbon sequestration

Excellent land resource efficiency

lelp deliver RE targets

Self-supply woodfue

nitigation generation biofuels Secondary

Retain revenue in local economy

Improve security of supply

Increase local investment

Increase rural employment

Reduce fuel poverty

ncrease farm biodiversity

Greenhouse Fuel & Fibre

Fast growing

Easy to propagate

Beneficial insects

Improve water quality **Bioremediation**

Hydraulic roughness

Assist in flood defence

> Screening Rapid shelter belts

improve poor quality land

linators

Reduce soil erosior

Ecosystem services

Biosecurity barriers

Improve local air quality

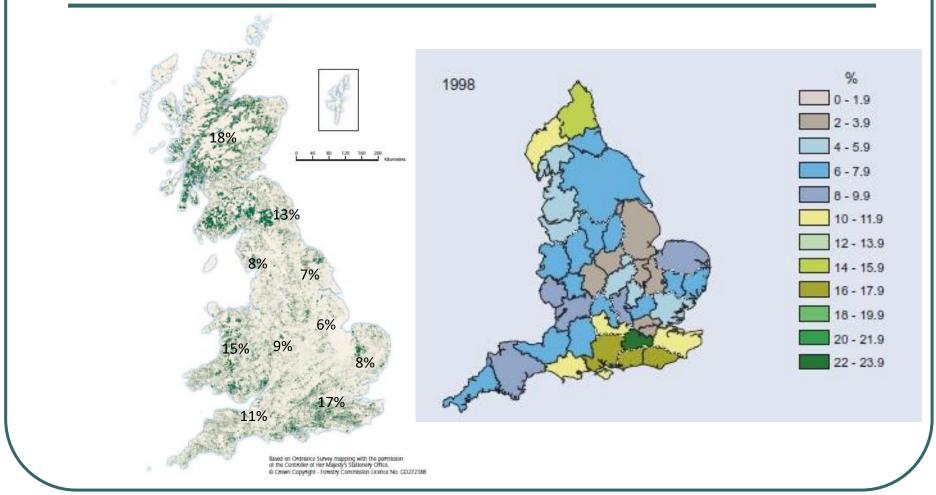
Food versus Fuel!

UK – 17 million hectares of farmland

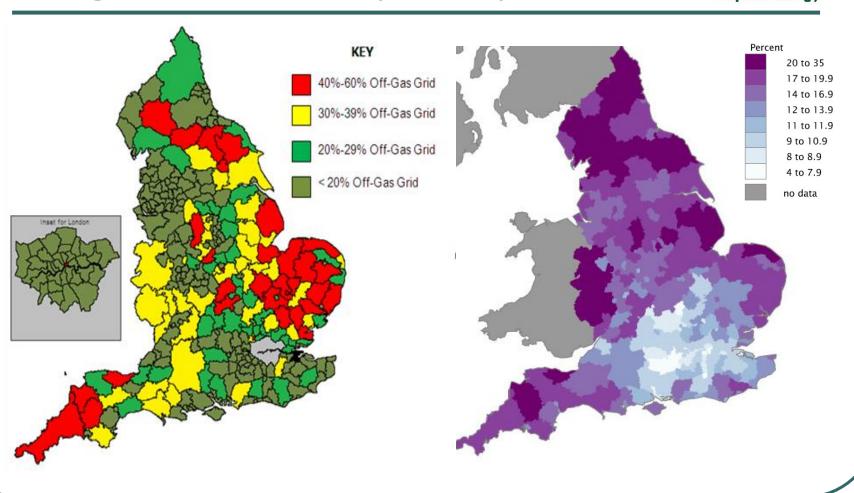
What about:

- Food versus horses (0.54-1.08 million hectares)
- Food versus beer and whisky (0.33 million hectares)
- Food versus golf (60,000 hectares)
- Food versus food waste (0.5 million hectares)

Not all willows are the same



Woodland cover

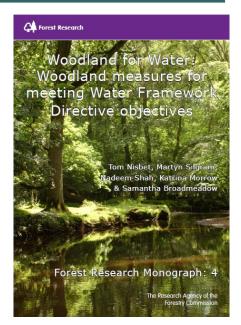


Refs: Forestry Commission. 2011 National Forest Inventory (NFI) woodland map update. http://www.forestry.gov.uk/forestry/INFD-8EYJWF

The National Inventory of Woodland and Trees — England 2001. http://www.forestry.gov.uk/pdf/frnationalinventory0001.pdf/\$FILE/frnationalinventory0001.pdf

Crops for Energy

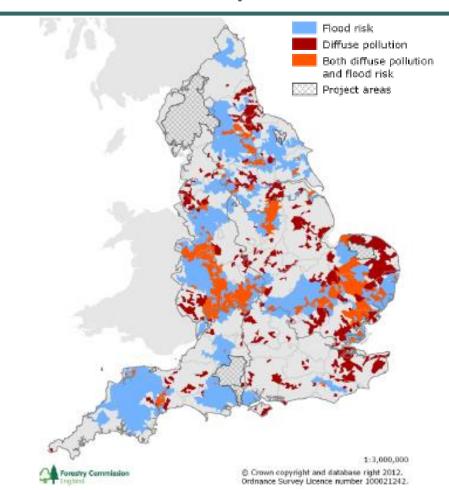
Off gas areas / Fuel poverty


Water quality / Flood mitigation

- 1/3 of water bodies in the SW 'good' status under the Water Framework Directive
- Agriculture 70% of nitrate pollution in surface water
- 39% of the SW is in an NVZ, affecting 6,806 farms
- Flood defences and coastal erosion in England costs £0.7
 billion/yr
- 1/6 houses in England at risk of flooding
- 2/10 local authorities most at risk of flooding are in the
 SW (North Somerset and Sedgemoor Districts)

Water quality / Flood mitigation

- "Energy woodland crops such as SRC could be a particularly attractive option for mitigating nitrate leaching in NVZs by maximising nitrogen uptake and providing a high yielding crop for farmers."
- "....the rapid growth and multi-stemmed nature of these crops makes them ideally suited to flood risk management."
- ".....energy crops can offer additional advantages for water protection, flood risk management and climate change mitigation by enhancing pollutant uptake and **sediment retention**, more rapid establishment of vegetation roughness (especially for SRC) and **increased carbon sequestration**, as well as a more attractive and faster economic return for landowners."



BUT....

".....there is no incentive to plant (energy) crops where they could benefit water most."

Flood risk / Diffuse pollution

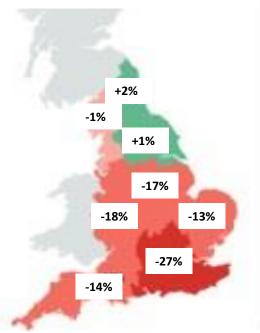
Ref: Forestry Commissions Woodland for Water – National EWGS Targeting Map 2012/2013 http://www.forestry.gov.uk/pdf/NationalMapping_report.pdf/\$FILE/NationalMapping_report.pdf

Flood mitigation options

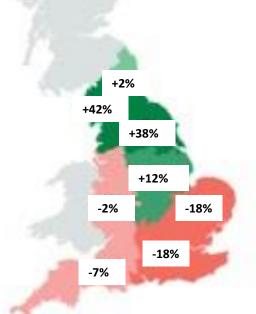
^{*} Under previous Rural Development programme

Biodiversity on farms

- Wild bird populations have fallen significantly since 1970.
- 59 species of birds have Biodiversity Action Plans

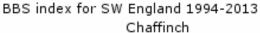

But

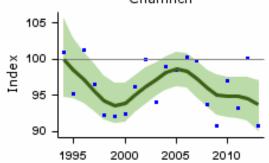
- Significantly more birds in SRC compared to the improved grassland and arable controls
- 12 bird species with Biodiversity Actions Plans (BAPs)

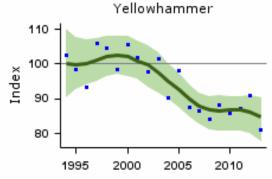


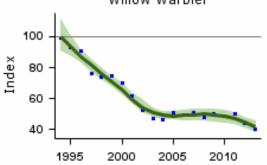
Bird populations

% Change in farmland bird populations by region 1994-2007




% Change in woodland bird populations by region 1994-2007


Bird populations


"The most commonly recorded bird in the SRC..."

BBS index for SW England 1994-2013

Red listed / Biodiversity Action Plan "These important species should benefit substantially from SRC cropping"

BBS index for SW England 1994-2013 Willow Warbler

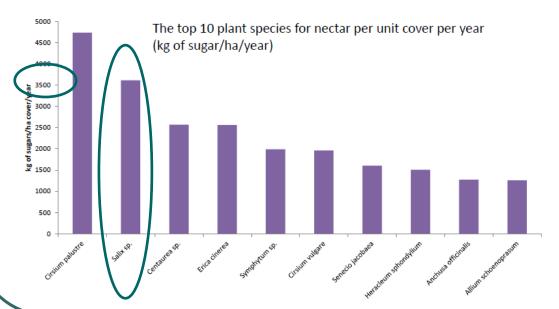
Amber listed "...should also benefit"

Refs: BTO/JNCC/RSPB Breeding Bird Survey South West England graphs http://www.bto.org/volunteer-surveys/bbs/latest-results/trend-graphs/south-west-england-graphs

Sage et al 2006. IBIS. Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. http://onlinelibrary.wiley.com/doi/10.1111/j.1474-919X.2006.00522.x/full

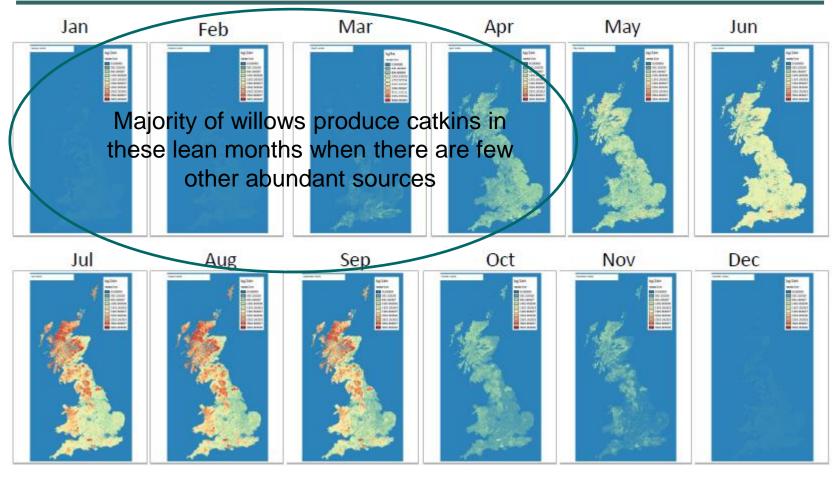
Biodiversity in SRC

- Field margins encourage butterfly and other invertebrates
 - 25 species identified in and around SRC plantations
 - 130% increase on land previously used for arable crops

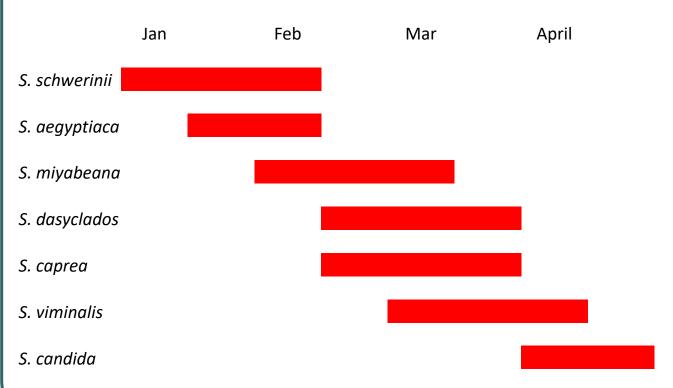

Ecosystem services

- Vegetation 10 x higher in SRC compared to maize
- Predatory arthropods 3 x more in SRC than cereal crops
- Hymenoptera and large hemiptera more abundant in SRC compared to arable and set aside

- 20% of UK cropland is covered by insect pollinated crops
- Value of pollination to UK agriculture = estimated £430 m

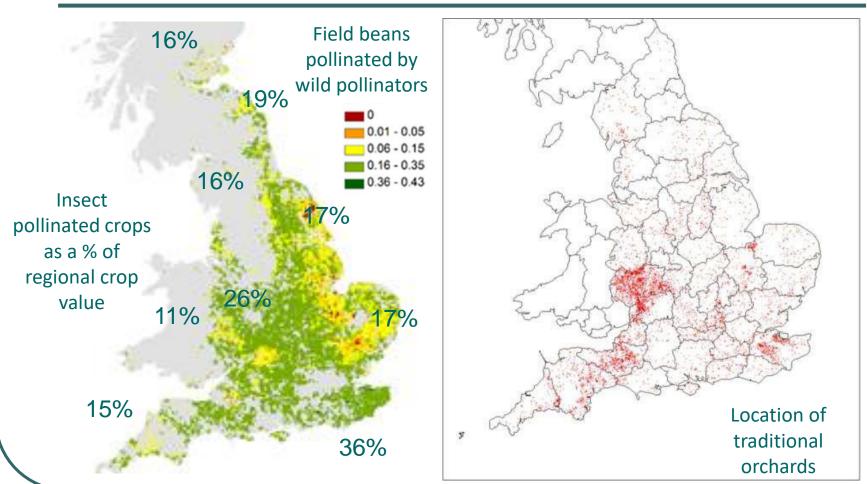

Picture credit: Jason Ingram http://www.jasoningram.co.uk/

Ref: Quantifying nectar resources from the flower to the national scale. Prof. Jane Memmott, Uni of Bristol . Agriland Project http://www.agriland.leeds.ac.uk/news/documents/4 JaneMemmottnectarresources.pdf


Pollination services

Ref: Quantifying nectar resources from the flower to the national scale. Prof. Jane Memmott, Uni of Bristol . Agriland Project http://www.agriland.leeds.ac.uk/news/documents/4_JaneMemmottnectarresources.pdf

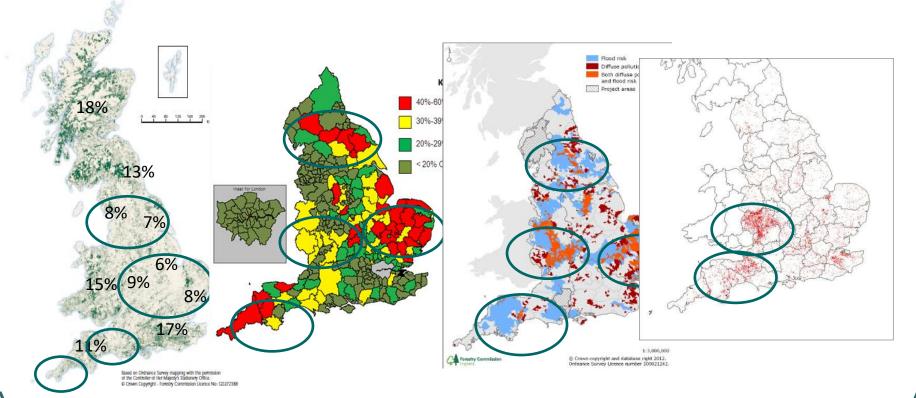
Flowering times



S. dasyclados Loden
(Picture credit: Stig Larsson)

Pollination services

Refs: Polce et al 2013. Species Distribution Models for Crop Pollination: A Modelling Framework Applied to Great Britain.


Breeze et al, 2011. Pollination services in the UK: How important are honeybees?

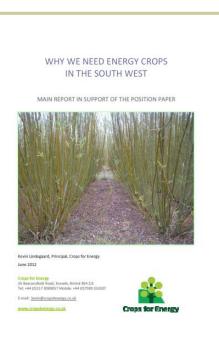
Traditional orchard project in England. May 2011 http://publications.naturalengland.org.uk/publication/47015

Where should we be planting SRC?

Where plantations plug a shortfall or provide a key service

Low woodland cover

Off gas areas


Flooding/Water quality

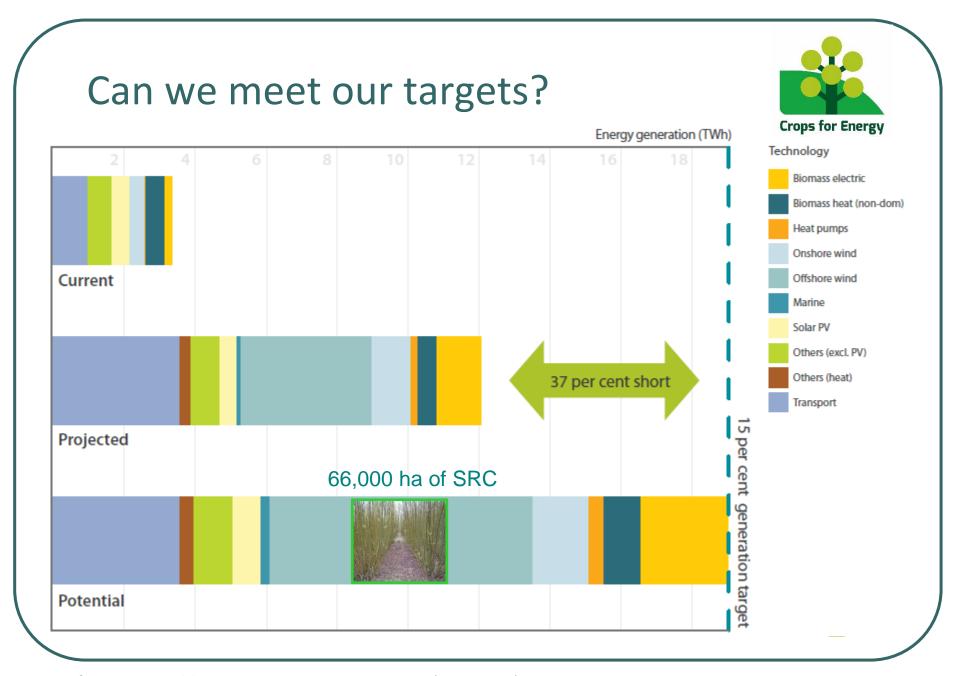
Pollination services

RE targets

- 12% target for renewable heat by 2020
- Predicted heat consumption in the SW is
 58.6 TWh
- 12% renewables is 7.03 TWh
- 50% of this demand = 804,532 odt of wood/yr
- Sustainable woodfuel resource in the SW
 = 685,340 odt/yr

The potential

Scenario	Contribution towards the 12%				
	Indigenous woodfuel	Energy crops	Other renewables		
1	4.5	0	7.5		
2	4.5	1.5	6.0		
3	4.5	3.0	4.5		
4	2.75	1.5	7.75		
5	2.75	3.0	6.25		
6	2.75	4.5	4.75		


The potential

Scenario	Amount of energy crops required			% of SW agricultural
	TWh/yr	Oven dry tonnes/year	Area (hectares)	land
1	0	0	0	0
2	0.88	205,532	21,865	1.2
3	1.76	411,063	43,730	2.3
4	0.88	205,532	21,865	1.2
5	1.76	411,063	43,730	2.3
6	2.64	616,595	65,595	3.5

Renewable heat

We could produce 37.5% of the renewable heat target from just 3.5% of the agricultural land

Ref: SW Renewable Energy Progress Report 2013 (Regen SW) http://www.regensw.co.uk/wp-content/uploads/2014/08/2013-Progress-Report-WEB.pdf

Climate change targets

- UK target 34 % cut in GHG emissions by 2020
- UK agriculture 8.8% of total GHG emissions in 2009
- SW 36 million tonnes of GHG emissions in 2009
- Hence, SW agriculture ~ 3.2 million tonnes of GHG emissions

Greenhouse gas reduction

- Replacement of more carbon intensive fuels
- Lower transport emissions
- Carbon sequestration benefits
- Growing 65,595 ha of energy crops in the SW
 - Annual saving of 780,946 tonnes CO₂ equivalent
 - 3.5% of agricultural land could offset 25% of the sectors emissions

Greenhouse gas reduction

3.5% of agricultural land could offset 25% of the sectors emissions

Post CAP reform reality

- No Energy Crops Scheme
- No SRC in EFAs
- No grants for infrastructure (so far)
- Sidelined by inferior options
- Ignored by Government

Society loses out

CAP REFORM CONSULTATION

Response from a broad coalition supporting short rotation coppice and the energy crops sector

Law of unintended consequences

The result of lobbying against energy crops You get:

- Energy options you don't like
 - E.g. fracking, nuclear, mega biomass using imports
- Less environmentally friendly crops planted
 - E.g. soya beans, maize
- Slower reaction to climate change
- Reduced biodiversity
- Inferior land resource efficiency

Energy crops and biodiversity

Maintain biodiversity

Increase biodiversity

V

Replace annual arable crops

Improve water quality

Reduce GHG emissions

/

√

Picture credits: Stig Larsson), Rufus Sage, Jan Weger

Contacts

Kevin Lindegaard

Crops for Energy 15 Sylvia Avenue

Knowle

Bristol BS3 5BX

www.crops4energy.co.uk Kevin@crops4energy.co.uk 0117 9089057

