ORGANICS TO HORTICULTURE

Simon Blackhurst

BSc (Hons) Applied Chemistry

MBPR (Commercial Horticulture)

FQA

Email: Simon@sjbqc.com

Mobile: 07791 038 332

Website: www.SJBQC.com

Legislation

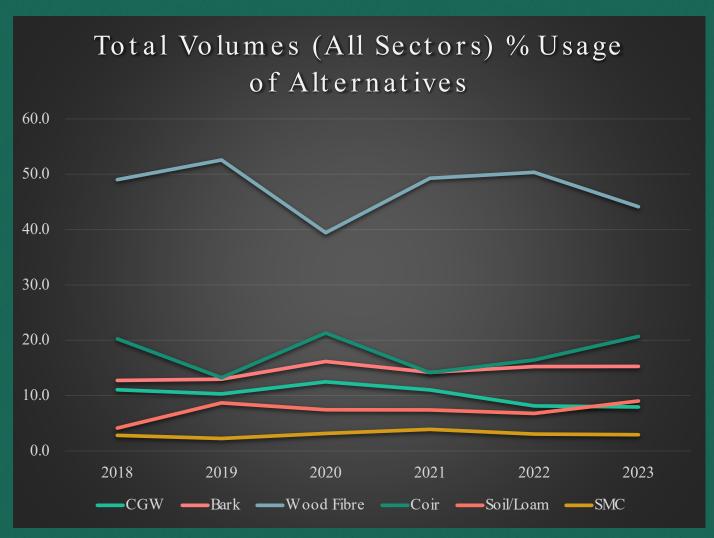
- Peat and Peat Free
- No current timeline to introduce retail or professional horticultural peat use ban (2024 missed vs 2030 prof)
- Sarah Dyke MP Private Members Bill delay
- DERFA has indicated a desire to legislate
- Current task and finish groups looking at producing roadmaps for industry
- No Governmental policy time to implement
- NGOs continue to lobby (PFP, WT)

Legislation

• Mandatory food waste segregation (commercial and municipal)

From April 2025, all non-municipal premises (mainly businesses and institutions) in England must arrange for the separate collection of food waste from their premises

From April 2026, in England a mandatory weekly collection of food waste for recycling or composting from households


- This new legislation will likely increase outputs from composting and anaerobic digestion facilities
- The current policy statement from the government references that anaerobic digestion is preferable to composting
- At present, there is no holistic strategy that addresses food security and soil health utilising biowaste outputs

Legislation

- Compost Quality Protocol and Anaerobic Digestate Quality Protocol key documents for EoW with PAS standards
- ADQP revision, new markets, lower limits
- Provide clear guidance on the production of a quality output product that would meet regulatory requirements
- In complying with the CQP/ADQP plus PAS standards, end of waste can be achieved
- To use these output products in Horticulture, additional requirements are likely required

Horticultural Use of Organics - Data

- Peat use consistently down for the last 5 years
- Alternatives use consistently up for the last 5 years
- 3.9M m3 substrate produced and sold
- 8% = 200,000 m3 or 100,000T

Total Volumes (All Sectors) % Usage of Alternatives

Year	CGW+AD
2018	11.1
2019	10.3
2020	12.5
2021	11.0
2022	8.1
2023	7.9
2024	TBC

Define a specification with the growing media user/manufacturer

Demonstrate compliance

Maintain consistency

Continuous improvement

Supplying Horticulture

Input Materials

- Making good quality products, consistently, requires good quality ingredients.
- A key risk to manufacturing a growing media from food and or green waste comes from inconsistent feedstocks
- Possibility of containing contaminants or chemicals that could hinder performance.
- Clearly define acceptance criteria with supplier (if applicable)

Improving the Quality of Outputs

- Clearly define input acceptance criteria with supplier (if applicable)
- If possible, restrict feedstocks to those that are clean...

segregated vegetable waste from greengrocers, plant materials from growers and florists, vegetable scraps and peelings from food preparation, coffee grounds, tea leaves, spent brewery grains and so on

- Front end contamination removal
- Final maturation stages stability is key, reduce Ammoniacal N
- Additional screening
- Increase testing frequency for key parameters

Key Parameters for Horticultural use of Organics

- Chemical pH, EC, N and Am-N, chemical residues, stability, moisture
- Physical Contaminants, structure and particle size, density
- Microbiological Plant and human pathogens

PATHOGENS					
Parameter		As receive	d (fresh)	Pass or	Method reference
		PAS 100 upper limit	Ollit	Fail	
E. coli at 44°C	<5	1000	CFU/g	Pass	BS ISO 16649-2
Salmonella spp at 37°C	Absent	Absent	Absent or Present in 25g	Dass	BS EN ISO 6579-1: 2017

STABILITY / MATURITY										
Parameter			Pass or	Method reference						
	Result **	PAS 100 upper limit	Unit	Fail						
Carbon dioxide (evolution rate)	8.1	16.0	mg CO ₂ / g organic matter / day	Pass	ORG0020					
Proportion of particles <20 mm	100.0	N/A	% g/g	N/A	01100020					

Plant Response Test	Result	PAS 100 minimum		Pass or Fail	Method Reference
Tomato plants germinated	100.00	80.00	no. of plants, tests as % of controls	Pass	
Tomato plant top growth	85.23		average g / plant, tests as % of controls	Pass	REAL MT PRT V1 01/12/2020
Tomato plant abnormalities	Absent	Absent	abnormal tomato plants in test trays	Pass	

PHYSICO-CHEMICAL PROPERTIES

Parameter	As receiv	/ed (fresh)	In dry matter		Method Reference
	Result	Unit	Result	Unit	
Bulk Density 1	573.93	g/l	438.7	g/l	BS EN 13040
Dry Matter	76.4	% m/m	N/A		BS EN 13040
Moisture	135.2	g/l	N/A		BS EN 13040
Moisture	23.6	% m/m	N/A		BO EN 13040
Organic Matter (Loss On Ignition)	19.2	% m/m	25.2	% m/m	BS EN 13039
Organic Carbon (LOI ÷ 1.72)	112	% m/m	14.6	% m/m	Calculated
pH	8.7		N/A		BS EN 13037
Electrical Conductivity	862	μ /cm @ 25 °C	N/A		BS EN 13038
Liectrical Conductivity	00.2	mS/m @ 25 °C	N/A		-BS EN 13030
Liming potential	N/A	% m/m CaO	N/A		See footnote 2

Minimum Quality from PAS

Tal	ble	3	-	M	lin	imum	comp	ost o	qual	ity	for	ger	nera	use
-----	-----	---	---	---	-----	------	------	-------	------	-----	-----	-----	------	-----

Table 3 – Minimum	digestate te	esting and	quality re	equirements	after validation

Item	Parameter	Method of test	Parameter				Metho	d of te	st		Upper limit and unit					
Pathog	gens (human and anima	I Indicator species) b)	Pathogens (hum	an and ar	nimal ind	icator	species)) in WD)/SL/SF							
1	Escherichia coli	BS ISO 16649-2	ABP digestate: human and animal pathogen indicator species				or any	other n	method	BP regu	As specified by the competent authority/ Animal Health vet/					
2	Salmonella spp	Schedule 2, Part II of BS EN ISO								ority/ Ani y Service			rinary Ser roval in p			
PTEs												appr	oval"			
3	Cadmium (Cd)	Appropriate in-house validated	Non-ABP digesta	ite: E. col	i		SCA MS	SS Part	3A [N1] or BS IS	O 16649-	2 1,000	CFU/g fr	resh mat	ter	
		based upon BS EN 13650 (soluble In aqua re	Non-ABP digesta Salmonella spp.	ite:			ABP reg	gulatio	n, acco	by appro rding to produce	nation	Absent in 25 g fresh matter				
4	Chromium (Cr)	Appropriate in-house validated based upon					SCA MS	-			.u, o.					
		BS EN 13650 (soluble in aqua re	Potentiallytoxic	element	s (PTE) ir	WD/	SL/SF									
5	Copper (Cu)	Appropriate in-house validated based upon	Liquid (≤ 15% TS) digesta	tes		For all F BS EN IS			002		Declare on a fresh weight basis				
		BS EN 13650 (soluble in aqua re	Fibre (> 15% TS) digestates				For all PTEs © except Hg:					Declare on a fresh weight basis				
6	Lead (Pb)	Appropriate in-house validated based upon				BS EN 13650:2001 For Hg:BS ISO 16772					Dasis					
		BS EN 13650 (soluble in aqua re	Total nitrogen	kg/t	Less	1 to	2 to		3 to 3.9	4 to	5 to 5.9	6 to 6.9	7 to 7.9	8 to 8.9	9 or	
7	Mercury (Hg)	Appropriate in-house validated based upon BS ISO 16772	(N)		than 1	1.9	2.9	' ª	3.9	4.9	5.9	6.9	7.9	8.9	more	
			Cadmium (Cd)	mg/kg	0.12	0.24	0.3	36 0	0.48	0.60	0.72	0.84	0.96	1.08	1.2	
8	Nickel (Ni)	Appropriate in-house validated	Chromium (Cr)	mg/kg	8	16	24	3	32	40	48	56	64	72	80	
		based upon	Copper (Cu)	mg/kg	16	32	48	6	64	80	96	112	128	144	160	
		BS EN 13650 (soluble in aqua re	Mercury (Hg)	mg/kg	0.08	0.16	0.2	24 0	0.32	0.40	0.48	0.56	0.64	0.72	0.80	
9	Zinc (Zn)	Appropriate in-house validated based upon	Nickel (Ni)	mg/kg	4	8	12	1	16	20	24	28	32	36	40	
		BS EN 13650 (soluble in aqua re	Lead (Pb)	mg/kg	16	32	48	6	64	80	96	112	128	144	160	
Stabili	ty/maturity a		Zinc (Zn)	mg/kg	32	64	96	1	128	160	192	224	256	288	320	
10	Microbial respiration rate	ORG 0020	Stability of WD/	SL/SF												
18/			Details of stability testing methods and requirements are shown in Annex A.													
	seeds and propagules	l	Physical contami	nants in \	ND/SL/SI	F										
11	Germinating weed seeds or propagule	REAL MT PRT	Stones > 5 mm				1	NRM m	ethod.	JAS-497/	001 [N3]	Decla	are on a f	resh wei	ght bas	
	regrowth		Total glass, metal non-stone, man-					NRM method JAS-497/001 [N3] Decla					Declare on a fresh weight basi			

- Basic tests required for Eow
- Additional requirements may be specified by end user
- Soil Improver market uses PAS standards

Options to Demonstrate Higher Quality Outputs

- Increase in Quality allows producer to command higher price note that all other growing media ingredients are more expensive than organics
- Benefits of organics use in horticulture are well documented
- PAS100 Field Bean Assay Test
- PAS 100 full suite for principal grade rather than only mandatory tests (Tomato plant response, nutrients)
- Increased stability testing after maturation
- Increased pathogen testing e.g. salmonella, E. coli
- Scientific studies/ Growing trials
- Finer? Dried? Pelletised? Separated Inputs? Concentrates?

Searching for other Byproducts

- As an industry, Horticulture requires more materials to enable the complete transition to peat free
- What other materials do you have access to?
- Focus on 'bio' additives in horticulture to improve performance opportunities?

Thank you!

For more information, please contact:

Simon Blackhurst

Email: Simon@sjbqc.com

Mobile: 07791 038 332

Website: www.SJBQC.com

